Er en horisontal tangent differentierbar?
Er en horisontal tangent differentierbar?

Video: Er en horisontal tangent differentierbar?

Video: Er en horisontal tangent differentierbar?
Video: Intermediate Value Theorem (IVT): Explained with Visuals and Examples 2024, November
Anonim

Funktionen er differentierbar på et tidspunkt, hvis tangent linje er vandret der. Derimod lodret tangent linjer eksisterer, hvor hældningen af en funktion er udefineret. Funktionen er ikke differentierbar på et tidspunkt, hvis tangent linjen er lodret der.

På samme måde, er en graf differentierbar ved en vandret tangent?

Hvor f(x) har a vandret tangent linje, f'(x)=0. Hvis en funktion er differentierbar på et tidspunkt, så er det kontinuerligt på det tidspunkt. En funktion er det ikke differentierbar på et punkt, hvis det ikke er kontinuerligt på punktet, hvis det har en lodret tangent linje ved punktet, eller hvis kurve har et skarpt hjørne eller spids.

For det andet, når tangentlinjen er lodret? EN tangent af en kurve er en linje der rører kurven på et tidspunkt. Den har samme hældning som kurven på det tidspunkt. EN lodret tangent rører ved kurven på et punkt, hvor kurvens gradient (hældning) er uendelig og udefineret. På en graf løber den parallelt med y-aksen.

Ydermere, er vertikal tangent differentierbar?

I matematik, især calculus, en lodret tangent er en tangent linje det er lodret . Fordi en lodret linje har uendelig hældning, en funktion hvis graf har en lodret tangent er ikke differentierbar på tangenspunktet.

Hvad gør noget differentierbart?

En funktion er differentierbar på et tidspunkt, hvor der er en defineret afledt på det tidspunkt. Det betyder, at hældningen af tangentlinjen for punkterne fra venstre nærmer sig den samme værdi som hældningen af tangenten af punkterne fra højre.

Anbefalede: